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Stable transport of laser beams in highly overdense plasmas is of significance in the fast ignition
of inertial confinement fusion, relativistic electron generation, and powerful electromagnetic emission,
but hard to realize. Early in 1996, Harris proposed an electromagnetically induced transparency (EIT)
mechanism, analogous to the concept in atomic physics, to transport a low-frequency (LF) laser in
overdense plasmas aided by a high-frequency pump laser. However, subsequent investigations show that
EIT cannot occur in real plasmas with boundaries. Here, our particle-in-cell simulations show that EIT can
occur in the strongly relativistic regime and result in stable propagation of a LF laser in bounded plasmas
with tens of its critical density. A relativistic three-wave coupling model is developed, and the criteria and
frequency passband for EIT occurrence are presented. The passband is sufficiently wide in the strongly
relativistic regime, allowing EIT to work sustainably. Nevertheless, it is narrowed to nearly an isolated
point in the weakly relativistic regime, which can explain the quenching of EIT in bounded plasmas found
in previous investigations.
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Transport of ultraintense lasers in plasmas in different
density ranges is crucial both in fundamental researches of
laser-plasma physics and diverse applications, including
particle acceleration [1,2], brilliant x-ray emission [3,4],
relativistic electrons generation [5,6], and inertial confine-
ment fusion (ICF) [7–9]. In recent laser-plasma experi-
ments, the laser beams with normalized field strength
reaching a > 1 and even a ≫ 1 (a ¼ eE=mcω) have been
widely adopted [10–12], where e andm are electron charge
and mass, and ω and c are laser frequency and speed in
vacuum. In such a laser field, the intrinsic relativistic
nonlinearity would lead to the well-known relativistic
transparency (RT) effect [13,14], where γm (γ is the
Lorentz factor) increases, and overdense plasmas could
not shield the laser field. Since the RT effect provides a
feasible path for deeper penetration of laser fields, enhanc-
ing their interaction with plasmas, it has become one of the
central issues with the intense lasers interacting with high-
density targets [15–18].
Multiple laser beam incidences in plasmas are antici-

pated to give rise to some novel effects, one of which is
electromagnetically induced transparency (EIT) [19].
Analogous to the concept of EIT in atomic physics [20],

it means that a low-frequency (LF) wave (also called Stokes
wave) with ω1 < ωcut can still propagate through plasmas
when aided by a pump wave with a frequency ω0 > ωcut,
where the cut-off frequency ωcut ¼ ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2ne=m

p
for

unmagnetized cold plasmas, owing to the interference
between the two waves [19]. The current induced by the
LF wave tends to be canceled by the beat current of pump
wave and plasma oscillation when ω0 − ωp < ω1, which
results in transparency of the LF wave [19,21]. Previous
investigations of EIT in plasma physics primarily focused
on weakly or nonrelativistic laser cases (a ≪ 1). Those
investigations have shown that EIT has stringent pre-
requisites, such as a narrow passband of the LF wave
frequency [22,23] or a strongly magnetized plasma back-
ground where the cyclotron frequency is comparable to the
EM waves [24]. By considering the three-wave coupling
processes where the anti-Stokes wave ω2 ¼ 2ω0 − ω1 is
introduced, Gordon et al. derived the dispersion relation-
ship of the Stokes wave under the condition ja1j; ja2j ≪
a0 ≪ 1 [21]. However, the transport of the Stokes wave
of Stokes-dominated cases (ja2j ≪ ja1j) in real plasmas
with boundaries was not observed in particle-in-cell
(PIC) simulations. Consequently, a negative assertion
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was put forth, stating that EIT would not work in bounded
plasmas [25].
Here, our PIC simulations show that EIT can work in

bounded plasmas in the strongly relativistic regime, which
is explained by a relativistic three-wave coupling model.
The passband allowing transport of the LF wave is
broadened with the increase in the pump laser intensity.
In the weakly relativistic regime, the passband is too narrow
and the phase matching among the pump, Stokes, and
anti-Stokes waves is easily broken when the plasma density
or ωp is perturbed by the laser interaction. As the pass-
band becomes sufficiently wide, the phase matching can be
robust against laser-driven density perturbation, which
therefore can result in stable propagation of the LF wave
in overdense plasmas in the strongly relativistic regime.
Furthermore, EIT is triggered by the interference of the
pump and Stokes waves, which requires the wave polari-
zation is parallel. However, the parallel polarization is not
necessary for conventional RT when the pump intensity is
much higher than the Stokes one, which can be distin-
guished from EIT (note that anisotropic-momentum dis-
tribution could affect RT [18,26]). This study clarifies the
long-standing theoretical problem of EIT in plasma physics
and can be applied in double-cone ignition (DCI) [9] or fast
ignition [8,27,28] to improve the electron spectrum and
yield [32–37] by mixing the second-harmonic and funda-
mental lasers.
Simulation setup.—The 1D-3V particle-in-cell (PIC)

code KLAPS [37] is utilized to investigate the EIT effect.
Here, the pump laser wave is denoted by a footnote “0,”
while the Stokes and anti-Stokes waves by “1” and “2,”
respectively. All the wave envelopes are set to be uniform

after a sin-shaped rise for 5T0. The waves are p polarized
(along the y direction), and the frequency relationship is
taken as ω1 ¼ 0.4ω0. The simulation domain is 40λ0
(2560 cells) in the x direction and the waves are injected
from the left side. The initial density nini is uniform within
10λ0 < x < 30λ0, and the rest of the domain is vacuum.
Two typical density values are adopted: low density with
nini ¼ 0.44ncr0 ¼ 2.78ncr1 (ω0 ¼ 1.5ωp;ini), and high den-
sity with nini ¼ 2.78ncr0 ¼ 17.4ncr1 (ω0 ¼ 0.6ωp;ini). For
each density value, three wave incidence cases are taken: a
pure pump wave with a0 ¼ 10 and a1 ¼ 0, a pure LF wave
with a0 ¼ 0 and a1 ¼ 1, and the mixing waves with a0 ¼
10 and a1 ¼ 1 incident from the left vacuum.
Anomalous LF-wave transparency.—We collect the laser

fields at the right vacuum after they propagate through the
plasma, as illustrated in Fig. 1. In the high-density plasma
case with nini ¼ 2.78ncr0 ¼ 17.4ncr1, the spectra of the
collected fields shown in Fig. 1(a) suggest that the pure
pump wave can penetrate the plasma by the RT effect, but
the pure LF wave cannot, as expected. Aided by the pump
wave in the mixing-wave case, the LF wave of ω1 ¼ 0.4ω0

can penetrate the plasma, as displayed by the blue curve
with a peak at 0.4ω0. This can be more clearly seen from
the waveforms of the laser fields filtered within ω=ω0 ∈
ð0.35; 0.42Þ in Fig. 1(c). The LF wave in the mixing-wave
case is much stronger than that in the pure pump-wave case,
where the latter is at a low level and generated by nonlinear
laser-plasma interactions [note that it is even lower in
lower-density plasmas with weaker nonlinear interactions,
as shown in Figs. 1(d) and 1(b)]. The anomalous LF-wave
penetration is robust against various plasma densities and
laser amplitudes, as seen in Figs. S2–S4 and S16–S18 in

FIG. 1. [(a),(b)] Spectra of the laser fields collected in the right vacuum and [(c),(d)] laser field waveforms filtered with the frequency
range ω=ω0 ∈ ð0.35; 0.42Þ, where different curves correspond to the mixing-wave, pump-wave, and LF-wave incidence cases. In plots
(a) and (b), the black-dashed and purple-dotted lines represent the frequencies of ω0

p ¼ ωp=
ffiffiffiffiffi
γ0

p
and ω0 − ω0

p. [(e),(f)] Laser field
waveforms filtered with ω=ω0 ∈ ð0.35; 0.42Þ, where the mixing waves are incident with the p-polarized LF wave and the pump wave of
p polarization (blue-solid line) and s polarization (red-dashed line), respectively. The upper and lower rows correspond to high-density
and low-density cases.
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the Supplemental Material (SM) [29] where we vary the
density within 1.11–25ncr1 and a0 within 2–20.
The anomalous LF-wave transparency in high-density

plasmas cannot be explained by the RT effect. When we
change the pump-wave polarization from parallel to
perpendicular to the LF-wave polarization, the transpar-
ency disappears, as displayed in Fig. 1(e). Considering the
pump-wave intensity is 100 times higher than the LF wave,
the relativistic modification on plasma frequency ωp=

ffiffiffi
γ

p
is

mainly determined by the pump wave, with γ ≈ γ0 inde-
penent of the pump-wave polarization. Therefore, Fig. 1(e)
suggests that beyond the conventional RT effect, there is
another mechanism for the anomalous LF-wave penetra-
tion. Next, we will show that it can be well explained
by EIT, which is triggered by the two-wave interference,
therefore, requiring the parallel polarization of the two
waves.
Model.—We develop a relativistic three-wave coupling

model based on the one presented in the weakly relativistic
regime [21], where an infinite, homogeneous 1D cold fluid
approximation is taken. Frequency ω is normalized by ω0,
wave number k by ω0=c, t by 1=ω0, x by c=ω0, momentum
p by mc, laser amplitude a by mc=e, scalar potential ϕ by
mc2=e, and electron-density perturbation n1 ¼ ne − nini by
ncr0. When the Coulomb gauge is selected, p ¼ a⊥ is
invariant, and Lorentz factor γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x þ a2⊥
p

. We take
all the laser waves p polarized, i.e., a⊥ ¼ aðx; tÞêy. We
take the laser amplitude form of a ¼ P

i ai exp½iðkix −
ωitÞ�=2þ c:c: and define γ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þP

i a
2
i =2

p
. We con-

sider the three-wave interaction, where ja0j ≫ ja1j; ja2j and
the phase-matching conditionsω1;2 ¼ ω0 ∓ Δω and k1;2 ¼
k0 ∓ Δk are satisfied. Then, the wave, Poisson, and ideal
fluid equations, as given by Eqs. (S1)–(S4) in the SM, can
be simplified by extracting γ0 even when laser amplitude
a0 ≫ 1. Taking ωp;ini=ω0 ¼ Ω, the wave and density-
perturbation equations can be expressed by

�
∂
2

∂x2
−

∂
2

∂t2
− Ω2

3γ20 − 1

2γ30

�
a ¼ Ω2

γ0

�
n1 −

a2

2γ20

�
a; ð1Þ

�
∂
2

∂t2
þ Ω2

γ0

�
n1 ¼

1

2γ20

∂
2a
∂x2

: ð2Þ

One can find that increasing γ0 causes a decrease in
both the effective plasma frequency [the third term on the
left-hand side of Eq. (1)] and nonlinear induced current
(the right-hand side). The relativistically decreased current
is canceled easier by the beat current of the pump and
plasma oscillation [19,21], lessening the requirement of
EIT occurrence. In other words, the relativistic effect can
broaden the passband for EIT, as will be shown in Fig. 2(c).
Taking the Fourier transformation, the dispersion relation-
ship in the strongly relativistic regime can be obtained
(see complete derivation in Sec. III in the SM):

�
M− −

2γ30
Ω2ðγ20 − 1ÞL−

��
Mþ −

2γ30
Ω2ðγ20 − 1ÞLþ

�
¼ M2; ð3Þ

where

L� ¼ ð1� ΔωÞ2 − ðk0 � ΔkÞ2 −Ω2
3γ20 − 1

2γ30
;

M� ¼ Δk2

Δω2 −Ω2γ−10
þ ð2k0 � ΔkÞ2
ð2� ΔωÞ2 −Ω2γ−10

− 3;

M ¼ Δk2

Δω2 −Ω2γ−10
þ 2k20
4 − Ω2γ−10

−
3

2
;

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −Ω2

1þ 3γ20
4γ30

� =4 −Ω2γ−30
4 −Ω2γ−10

s
: ð4Þ

Equations (3) and (4) can converge to the dispersion
relationship in the weakly relativistic case presented in [21]
as γ0 → 1. For a given set of parameters ðω0; γ0;ΔωÞ,
Eq. (3) is a quartic equation for Δk with four branches of
solutions. By evaluating the ratio ja�2=a1j, these solutions
can be classified into Stokes and anti-Stokes dominant
cases and each case has two branches. We focus on Stokes-
dominant branches (ln ja�2=a1j < 0) in which there is one

FIG. 2. Dispersion relationship of Stokes-dominant branches
with lnðja�2=a1jÞ < 0 calculated from Eq. (3) in (a) the low-
density case with ωp ¼ ω0=1.5 and (b) the high-density case with
ωp ¼ ω0=0.6, where the black-dashed and purple-dotted lines
represent the frequencies of ω0

p ¼ ωp=
ffiffiffiffiffi
γ0

p
and ω0 − ω0

p. Reðk1Þ
(red curve), located in the orange area, means forward propaga-
tion. The bright yellow area in (b) highlights the passband of ω1

within ½0.377; 0.446�ω0. (c) Passband versus a0, where the green
and orange bars correspond to the analytical and PIC results
(a0 ≥ 2). The initial plasma density keeps nini=n0cr0 ¼ 0.389,
corresponding to the high-density case in (b). Passband width at
a0 ¼ 0.1 is magnified by 10 times. (d) Passband obtained by PIC
results versus the density.
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representing the forward propagation of the three waves, as
shown in Fig. 2 (the complete four branches of solutions are
given in Fig. S7 in the SM).
Criterion and passband for stable propagation.—Stable

forward propagation of both Stokes and anti-Stokes waves
requires (i) Imðk1Þ ¼ 0; (ii) Reðk1Þ∈ ð0; k0Þ. We analyze
the stable propagation based on two characteristic frequen-
cies: the effective plasma frequency ω0

p ¼ ωp=
ffiffiffiffiffi
γ0

p
and

beat-wave resonance frequency ω0 − ω0
p, where they re-

present the cutoff frequency for RT and a singularity of
Eq. (3), respectively. When ω1 > ω0

p (ω1 < ωp always
adopted), the Stokes wave can propagate by RT with the
relativistic decrease of plasma frequency, corresponding to
our low-density case shown in Fig. 2(a). In this figure,
Imðk1Þ ¼ 0 (blue curve) gives two frequency endpoints
leaving a wide region for propagation, where the region lies
within (ω0

p, ω0 − ω0
p). Because ω1 < ω0 − ω0

p, the current
induced by the Stokes wave cannot be canceled by the beat
wave of ω0 − ω0

p [19,21], i.e., EIT cannot be triggered.
Hence, the main mechanism of the Stokes-wave propaga-
tion in this case is RT rather than EIT, supported by Fig. 1(f)
in which the Stokes wave (LF wave) propagation is slightly
affected by the laser polarizations.
While ω1 < ω0

p and ω1 > ω0 − ω0
p, RT does not work

for the Stokes wave, meanwhile, the current induced by
the Stokes wave can be canceled by the beat [19,21],
i.e., EIT can work. This is the case with the high density
shown in Fig. 2(b). The black-dashed line representing ω0

p

is on the right of the purple-dotted line representing
ω0 − ω0

p (or ω0 < 2ω0
p corresponding to the high-density

case), between which there is a passband for the Stokes
wave propagation, given by Imðk1Þ ¼ 0 (blue curve).
The passband of ω1 is highlighted with bright yellow
and lies within ½0.377; 0.446�ω0, where the starting point
is at ω0 − ω0

p. The obtained passband is consistent with
Fig. 1(a) where ω1 ¼ 0.4ω0. In the weakly relativistic
regime, our model shows that the passband is narrowed to
nearly an isolated point at ω1 ¼ ω0 − ωp [green bars in
Fig. 2(c) and Fig. S6 in the SM]. Besides, the Stokes-wave
propagation in EIT is aided by the pump wave so ω0 > ω0

p

is required for the pump wave transparent in the plasma
(see more PIC simulations with different plasma densities
in Figs. S2–S4 in the SM). To sum up, one can obtain rough
criteria for EIT occurrence:

ω1 > ω0 −
ωpffiffiffiffiffi
γ0

p ;
2ωpffiffiffiffiffi
γ0

p > ω0 >
ωpffiffiffiffiffi
γ0

p : ð5Þ

Note that calculating Eq. (3) is needed to obtain an accurate
passband, as done in Figs. 2(b) and 2(c). The calculated
passband agrees with PIC results in the strongly relativistic
regime [Fig. 2(c)]. In Fig. 2(d), we change plasma density
and the passband exists stably and when a0 ≫ 1, passband
width and location tend to be constant at a given nini=n0cr0,

agreeing well with our analysis on the asymptotic behavior
[Eqs. (S32) and (S33) in the SM].
To further examine the model and investigate energy

coupling among the three waves, we present spatial
distributions of the wave amplitudes obtained from PIC
simulations in four cases. In Fig. 3(a), the same parameters
as Fig. 1(a) are taken with the high-density nini ¼ 2.78ncr0
and the LF (Stokes) wave frequency ω1 ¼ 0.4ω0 located in
the passband. Via relativistic EIT, the Stokes wave with
around 2 times the initial amplitude is transported to the
right vacuum (x > 30λ0). In the plasma, energy transfer
from the relativistic pump wave to the other two waves
takes place, causing significant vibration and amplification
of the Stokes wave and establishment of the anti-Stokes
wave. When the plasma density increases [e.g., nini ¼
3.31ncr0 in Fig. 3(b)], the energy transfer becomes stronger.
In this case, both pump and Stokes waves experience
significant energy depletion during transport, hence, a
weaker Stokes signal is collected at the right vacuum.
With higher density [e.g., nini ¼ 4ncr0, see Fig. S3 in the
SM], stronger energy depletion occurs, even leading to the
opacity of the Stokes wave. While the plasma density is
relatively low [e.g., nini ¼ 0.44ncr0 in Figs. 3(c) and 1(b)],
the EIT criteria given in Eq. (5) are not satisfied and
therefore the energy coupling among the three waves is
weak, where the Stokes amplitude appears little vibration
during transport in plasmas.
Quenching of EIT in the weakly relativistic regime.—It

has been reported that in the weakly relativistic regime EIT
cannot work in bounded plasmas [25]. Our PIC simulation
obtains the same result, as displayed in Fig. 3(d) where

FIG. 3. Amplitudes of the Stokes and anti-Stokes waves
(left axis) as well as the pump wave (right axis), where a0 ¼ 10
and a1 ¼ 1 are taken in (a)–(c), and a0 ¼ 0.3 and a1 ¼ 0.03 are
taken in (d). The plasma density nini is adopted as 2.78ncr0
(ω0 ¼ 0.6ωp;ini) in (a), 3.31ncr0 (ω0 ¼ 0.55ωp;ini) in (b), and
0.44ncr0 (ω0 ¼ 1.5ωp;ini) in (c) and (d). We take ω1 ¼ 0.4ω0 in
(a)–(c) and ω1 ¼ ω0=3 in (d). Note that the plasma is located
within 10λ0 < x < 30λ0.
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a0 ¼ 0.3, a1 ¼ 0.03 and nini ¼ 0.44ncr0 (i.e., ωp¼ 2ω0=3).
Here, we take ω1 ¼ ω0=3 to meet the predicted passband
for Stokes-wave propagation. The pump wave penetrates
through the plasma, but the Stokes wave is completely
reflected on the plasma boundary x ¼ 10λ0. On the boun-
dary, a weak anti-Stokes wave is generated by the three-
wave coupling but it does not continue to generate in the
plasma with neither the Stokes wave nor the subsequent
three-wave coupling. Because the anti-Stokes wave source
is located at the boundary, only the forward-emitting signal
(toward the plasma) attenuates gradually with propagation,
while the backward-emitting one (toward the left vacuum)
does not.
Why can EIT occur in the strongly relativistic regime but

not in the weakly relativistic regime? First, the passband for
the phase-matching condition is sufficiently wide in the
former [Figs. 2(b)–2(d)] and in the latter it narrows to
nearly an isolated point ω1 ¼ ω0 − ωp [Fig. 2(c)]. This
phase matching can be satisfied only at the beginning of
the laser interaction and on the plasma boundary. Later,
the plasma density is perturbed, ωp is changed, and ω1 ¼
ω0 − ωp does not hold. This causes the three-wave cou-
pling to occur only on the plasma boundary and EIT cannot
be developed in the plasma, as shown in Fig. 3(d). In the
strongly relativistic regime, the wide passband can bear
perturbation in the plasma density and ωp to a great degree.
Beyond the passband due to the density perturbation, the

Stokes wave in the strongly relativistic regime can propa-
gate an appreciable distance in plasmas, because the real
and imaginary parts of k1 ¼ K þ iκ are comparable, which
opens up opportunities to return the passband. As shown
in [25], when the Stokes wave and pump wave reach the
boundary of the plasma, the density and nonlinear current
perturbation has the form of

n1 ∝ a0a1eiðΔkx−ΔωtÞ; j ∝ ja0j2a1eiðk1x−ω1tÞ: ð6Þ

In the weakly relativistic regime (ja0j ≪ 1), the scale
analysis in Eqs. (S23)–(S27) in the SM shows that K falls
rapidly while κ soars at the growth rate ∼Oðja0j−2Þ once
the frequencies of the beat and Stokes waves mismatch,
resulting in K ≪ κ and k1 ≃ iκ. Therefore, the current
source related to the Stokes wave j ∝ expð−κxÞ damps
rapidly and cannot penetrate into the plasma. However, in
the strongly relativistic regime, the dispersion curves in
Fig. 2(b) show that Reðk1Þ on the left of beat-wave reso-
nance line falls to zero much more gently than in the
weakly relativistic regime [Figs. S6(c) and S6(d) in the
SM], indicating that K ≳ κ even if the beat-wave frequency
exceeds ω1 in a large range. Therefore, the nonlinear
current and the Stokes wave can propagate in the bulk
plasma before significant damping.
In summary, we have found anomalous transparency

of a low-frequency laser in overdense plasmas with the
assistance of a relativistic pump laser. This anomalous

transparency depends on the laser polarization, which can
be explained by EIT rather than the well-known RT. We
have developed a relativistic three-wave coupling model
and presented a criterion and a frequency passband for EIT.
In the strongly relativistic regime, since the relativistic
effect leads to the decrease of the induced current, the
passband becomes sufficiently wide, allowing stable propa-
gation of the low-frequency laser in overdense plasmas.
EIT is sustainable over long-distance propagation and can
survive considering multidimensional effects (Sec. VIII and
IX in the SM). However, the passband narrows to nearly an
isolated point in the weakly relativistic regime, causing the
disappearance of EIT in real plasmas with boundaries, as
reported in existing works.
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